

Symbiotic partners of arbuscular mycorrhiza

	plants	fungi
	-about 70-80% of	phylum
	herbs, tropical trees	Glomeromycota
-h hc	-hornworts, liverworts,	(>300 described species)
	norsetails, clubwons	(+Mucoromycota: ?? species)
	(> 150 000 species)	

Agroécologie

Dion

Function of mycorrhiza

carbon compounds (sugar)

plants

mineral nutrients (phosphate, nitrogen etc.)

ents e, arbuscular mycorrhiza

The ubiquitous symbiosis for house, garden and agriculture

Fungi: Glomeromycota

Plant hosts: leek, onion, tomatoes, potatoes, beans, peas, carrots, parsley, cereals, lettuce, vines, apple trees, grasses etc.

rutabaga

Non-hosts:

cabbage, spinach,

Séminaire AgroBRC-RARe: November 25, 2021

Culturing Glomeromycota

- obligate biotrophs •
- spores contain numerous other microorganisms •
- except few species cultivated on transformed roots ("in vitro culture") •
- host specificity in cultivated isolates very low, host preferences in • seminatural systems

Séminaire AgroBRC-RARe: November 25, 2021

Installations

main collection: 3 climatized rooms with 10 custom-built growth cabinets

The isolates

- 43 isolates in 30 species (312 pot cultures) on their plant hosts
- 6 of these also available *"in vitro"* on transformed carrot roots

- origin:

-Europe: 24 (France: 3)

-N America: 9

-S America: 3

-Australia/New Zealand: 3

-Asia: 4

- type strains (ex-type): 11

Séminaire AgroBRC-RARe: November 25, 2021

Land use	Fertilisation	Total number AM fungal	Species diversity index
		species	(Shannon-Weaver)
Permanent grassland	No fertilisation	24	2.29ab
	(20 yrs)	25	2.32ab
		20	2.34ab
Arable			
7 yr crop rotation	Bio-organic Conventional	18	2.45a
(grass-clover)		13	2.14b
Monocropping	Mineral & organic	10	1.70c
(maize)	Mineral	9	1.72c
	Mineral	8	1.32c

AM fungal diversity: disturbed (arable) < non-disturbed (grassland) ecosystems

Séminaire AgroBRC-RARe: November 25, 2021

Approaches for mycorrhizal biotechnology

- · management: maintaining and supporting existing indigenous species
 - establishing conditions conducive to AMF diversity and abundance: e.g. no-till, low pesticides, low fertilisation, avoiding non-host plants in rotations
- inoculation: adding fungal propagules
 - competition problem, can be challenging due to inoculum quantity; most inoculation studies do not verify inoculation success and many use sterile soil as control
 - well-established for plants in sterile potting substrates and then outplanted
- (plant breeding: plant cultivars differ in their mycorrhizal response)

Séminaire AgroBRC-RARe: November 25, 2021

Community structure of AMF in a field experiment in Tänikon (CH) based on 454 Titanium FLX+ sequencing of an rpb1 region (Stockinger et al., 2014)

Agroécologie

Dion

AMF effects on plant communities

Encouraging diversity. Grasses prevail in poor soil conditions (right) but are overrun by a broader plant community when mycorrhizal fungi are added to the soil (left).

Photo: Marcel van der Heijden

Séminaire AgroBRC-RARe: November 25, 2021

ibg

A large part of AMF functional diversity may be found on the intraspecific level

- Need to take into account interisolate variation
- Strong inter-isolate variation of AMFinduced yield differences in crop plants with *F. mosseae* (Munkvold et – al., 2004)
- Possible intra-species ecotypes grassland vs. elsewhere of *R. irregularis* (Börstler et al., 2010)

Agroécologie

Fig. 4 Glowth and r uptake by the mycomizati tung: (a) total shoots P content, dotted line represents uptake into non-mycomizal (NM) shoots. (b) Fungal ¹⁷P transport to the shoet. (c) Hyphallength in the root-free compartment. Standard deviations are shown as vertical lines on columns.

Séminaire AgroBRC-RARe: November 25, 2021

AMF are already there! Using mtLSU markers to trace an inoculated strain in the field: Sýkorova et al., 2011

Phalaris arundinacea

Re-vegetated mine spoil at Chomutov, Czech Republic

The "in vitro" dilemma

- "in vivo" inoculum production often has problems with purity or propagule density.
- Root organ culture offers the only way to produce axenic AMF biomass
- · Higher technologial effort necessary for large-scale production
- Only very few AMF species are available using this method (basically Rhizophagus isolates)
- Most in vitro inoculum produced worldwide is from a single isolate: Rh. irregularis DAOM 197198

Séminaire AgroBRC-RARe: November 25, 2021

Using Rh. irregularis mtLSU haplotypes to demonstrate inoculation success:

Haplotype A was significantly more frequent in the inoculated than in uninoculated plots

(Analysis of variance Df error=11: F=24.43: p<0.001)

Séminaire AgroBRC-RARe: November 25, 2021

Plant breeding, a possible door opener for mycorrhizal technology?

- Plant cultivars are known to differ in mycorrhizal growth response (MGR) and root • colonization (Graham etal., 1991; Hetrick et al., 1993)
- Does domestication negatively affect MGR? Breeding for improved root soil exploration for P could result in selection for a lower MGR and such plants may limit colonisation (Graham et al., 1991)
- Breeding for high colonization may be difficult due to low heritability (Leiser et al., 2016) -
- Is it more important to select for ٠ P use efficiency?

Séminaire AgroBRC-RARe: November 25, 2021

Importance of mycorrhiza collections for sustainable agriculture

- ressource centers for research and inoculum production:
 - culturing methods, detection/identification, functional diversity, interactions with plant cultivars...
 - well-defined inoculum isolates
- represent intraspecific diversity of of "common colonizers" (*Rh. irregularis, C. claroideum, F. mosseae* etc.)
- represent maximum taxonomic (and functional?) diversity outside of "common colonizers"

Séminaire AgroBRC-RARe: November 25, 2021

Thank you very much for your valuable attention!

Séminaire AgroBRC-RARe: November 25, 2021

